bullx cluster suite

User's Guide

extreme computing

REFERENCE
86 A2 22FA 02

extreme computing

bullx cluster suite
User's Guide

Software

July 2009

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

REFERENCE
86 A2 22FA 02

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not limited
to, copying, distributing, modifying, and making derivative works.

Copyright © Bull SAS 2009

Printed in France

Trademarks and Acknowledgements
We acknowledge the rights of the proprietors of the trademarks mentioned in this manual.
All brand names and software and hardware product names are subject to trademark and/or patent protection.

Quoting of brand and product names is for information purposes only and does not represent trademark misuse.

The information in this document is subject to change without notice. Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Preface

Scope and Objectives

The purpose of this guide is to describe the tools and libraries included in the bullx cluster
suite delivery which allow the development and testing of application programs on the Bull
extreme computing clusters. In addition various open source and proprietary tools are

described.

Intended Readers

This guide is for users and developers of Bull extreme computing applications.

Prerequisites

The installation of all hardware and software components of the cluster must have been
completed. The cluster administrator must have carried out basic administration tasks
(creation of users, definition of the file systems, network configuration, etc).

See the Administrator’s Guide for more details.

Structure
This guide is organized as follows:

Chapter 1. Introduction to the extreme computing Environment.
Provides a general introduction to software environment.

Two types of programming libraries are used when running programs in the extreme
computing environment: Parallel libraries and Mathematical libraries. These are described
in the chapters 2 and 3:

Chapter 2. Parallel Libraries.
Describes the Message Passing Interface (MPI) libraries to be used when
parallel programming.

Chapter 3. Scientific Libraries.
Describes the scientific libraries and scientific functions delivered with the
bullx cluster suite delivery and how these should be invoked. Some of
Intel’'s and NVIDIA proprietary libraries are also described.

Chapter 4. Compilers.

Describes the compilers available and how to use them.

Chapter 5. The User’s Environment.
Describes the user's environment on extreme computing clusters, including
how clusters are accessed and the use of the file systems. A description of
Modules which can be used to change and compare environments is also

included.

Preface

Chapter 6. Resource Management using SLURM
Describes the SLURM Resource Management utilities and commands.

Chapter 7. Batch Management and Launching an Application
Describes how to use the PBS Professional Batch Manager and different
program launching options.

Chapter 8. Debugging Tools.
Describes some debugging tools.

Glossary and Acronyms
Provides a Glossary and lists some of the Acronyms used in the manual.

Bibliography

Refer to the manuals included on the documentation CD delivered with your system OR
download the latest manuals for your bullx cluster suite release, and for your cluster
hardware, from: hitp://support.bull.com/

The bullx cluster suite Documentation CD-ROM (86 A2 12FB) includes the following

manuals:

e bullx cluster suite Installation and Configuration Guide (86 A2 19FA)
e bullx cluster suite Administrator’s Guide (86 A2 20FA)

e bullx cluster suite User's Guide (86 A2 22FA)

e bullx cluster suite Maintenance Guide (86 A2 24FA)

e bullx cluster suite Application Tuning Guide (86 A2 23FA)

e bullx cluster suite High Availability Guide (86 A2 25FA)

e InfiniBand Guide (86 A2 42FD)

e LDAP Authentication Guide (86 A2 41FD)

The following document is delivered separately:

e The Software Release Bulletin (SRB) (86 A2 73EJ)

Nmportont

The Software Release Bulletin contains the latest information for your delivery. This should
be read first. Contact your support representative for more information.

For Bull System Manager, refer to the Bull System Manager documentation suite.

For clusters which use the PBS Professional Batch Manager:
e PBS Professional 10.0 Administrator’s Guide (on the PBS Professional CD-ROM)
e PBS Professional 10.0 User’s Guide (on the PBS Professional CD-ROM)

ii bullx cluster suite - User's Guide

http://support.bull.com/

For clusters which use LSF:
e LSF Installation and Configuration Guide (86 A2 39FB) (on the LSF CD-ROM)
e Installing Platform LSF on UNIX and Linux [on the LSF CD-ROM)

For clusters which include the Bull Cool Cabinet:

e Site Preparation Guide (86 A1 40FA)

e R@ck'nRoll & R@ck-to-Build Installation and Service Guide (86 A1 17FA)
e Cool Cabinet Installation Guide (86 A1 20EV)

e Cool Cabinet Console User's Guide (86 A1 41FA)

e Cool Cabinet Service Guide (86 A7 42FA)

Highlighting

e Commands entered by the user are in a frame in ‘Courier’ font, as shown below:

mkdir /var/lib/newdir

System messages displayed on the screen are in ‘Courier New~ font between 2
dotted lines, as shown below.

Enter the number for the path :

e Values to be entered in by the user are in “Courier New’, for example:
CoM1

e Commands, files, directories and other items whose names are predefined by the
system are in ‘Bold’, as shown below:
The /etc/sysconfig/dump file.

e The use of Italics identifies publications, chapters, sections, figures, and tables that are
referenced.

e < > identifies parameters to be supplied by the user, for example:

<node_nhame>

WARNING
A Warning nofice indicates an action that could cause damage to a program, device,
system, or data.

Preface iii

iv bullx cluster suite - User's Guide

Table of Contents

PrEIOICE. ... ettt e e e e e e e e e e ee bbb e aaaaaaeeeaaanaaanes i
Chapter 1. Introduction to the extreme computing Environment............................. 1-1
1.1 Software ConfigUurationooiuiiiiiii e 1-1
1.1.1 Operating System and Installation.............ccccoiiiiiiiii e 1-1

1.2 Program Execution ENVIFONMENTuuuiuiiiiiiiiiiiiiiiiiiiiiii e 1-2
1.2.1 RESOUICE MANAGEMENT ...t e e e e 1-2

1.2.2 Batch ManQ@emMENtcoiiiiiiiiiiiie et 1-2

1.2.3 Parallel processing and MPI libraries..............ooooiiiiiiiiiiii e 1-3

1,24 Data and FIlesccouiiiiiieeiiie e 1-3
Chapter 2. Parallel Libraries..........cocooveeiieeiieiieeeeeeeeeeeeeeeee e, 2-1
2.1 Overview of Parallel LIbrariesooiiiiiiiiii e 2-1

2.2 MPIBUIIZ .o 2-2
2.2.1 Quick Start for MPIBUII2cooiiiiiiiii e 22

2.2.2 MPIBUII2 COmMPIlErsviiiiiieeiiie e 2-2

2.2.3 Configuring MPIBUIIZociiiiiiiii e 2-3

2.2.4 RUnNING MPIBUIIZoiiiiii e 2-3

2.2.5 MPIBUII2 1.3 X FEOAIUIES .o e et 2-3

2.2.6 AdvANCEd FEAIUIES ... 2-4

2.2.7 MPIBUII2 TOOIS ..ot 29

2.2.8 MPIBUlI2 — Example of Useccc.oooiiiiiiiiiiiic 2-11

2.2.9 MPIBUII2 and NFS ClIUSIES.coiuiiiiiiiieiiii et 2-12

2.2.10 DEbUGGING ...ttt 2-13

2.3 MPIDUI2-PAIAMS ..o 2-14
2.3.1 The mpibull2-params commandccooiiiiiiiiiii 2-14

2.3.2 FAMIY NOMES «.viiiiiiiiii e 2-17

2.4 Managing your MPl environmento.uuuiiiiiiiiiiiiiiiie e 2-18

2.5 Profiling with mpianalyserccoiiiiiiiii e 2-19
Chapter 3. Scientific Librariescooiiiiiiiiiiiiii e, 3-1
3.1 OVEIVIEW ..ottt e et e e e 3-1

3.2 BUll Scientific STUAIOvviiiiiiii e 3-1
3.2.1 Scientific Libraries and Documentationcccvuviiiiiiiiiieiiiiie e 32

32,2 BLACS et 3-3

3.2.3 SCALAPACK ...t 3-4

3.2.4 BlOCkSOIVEDS ... 35

325 OPACK e 35

3.2.6 SUPETLU e 3-6

32,7 TV e 3-6

3208 PETSC ittt 37

3.2.9 INETCDF ettt 37

Table of Contents v

3.2.T0 PNETCDF ...ttt ettt e e e e e e 3-7

3.2.17 METIS and PARMETIS ...ttt 3-8
32,12 SCIPOI . 3-8
K B B o 1T T Yol PP 3-8
32,14 MPFR ..o 39
3.2.15 SHDFS/PHDES ... 3-9
3.2.16 ga/Global Arraycc.ooiiiiiiiie e 3-10
3217 g8l e 3-10
3,218 PYAPACK ettt 3-11
3,219 vaIGrINd oo 3-12

3.3 Intel Scientific LIrariesoooiiiiii e 3-13
3.3.1 Intel Math Kernel Librarycccoooiiiiiiii e 3-13
3.3.2 Intel Cluster Math Kernel Libraryc.ccooiiiiiiiiieeee e, 3-13
3.3 8 BLAS e 313
3.3.4 PBLAS Lttt nnnes 3-14
3.3.5 LAPACK L ettt 3-14

3.4 NVIDIA CUDA Scientific LIDraries.coviiiiiiiiiiiie et 3-14
3.4.1 CUR T 3-14
3i4.2 CUBLAS ... 3-15
Chapter 4. COMPIlErS ... 4-1
4.1 OVBIVIEW . e e 4-1
4.2 Intel® Fortran Compiler Professional Edition for LinUXcccooeioviioiiieiieieeeeeeeee 4-1
4.3 Intel® C++ Compiler Professional Edition for LinUXoccooiieviiiviieiiieeeeeeeeeeeeeee 42
4.4 Intel COMPIlEr LICENSESoiueiieiiiii et 4.3
4.5 Intel Math Kernel Library LICensescooiiiiiiiiiiiec e 4-4
4.6 GINU COMPIIEIS ..ottt e et e e et e e e enaaaeeeaa 4-4
4.7 NVIDIA nvec C CompPiler......couiiiiiiiiiiii e 4-4
4.7.1 Compiling with nvec and MPl ..o 4.5
Chapter 5. The User's Environment ..., 5-1
5.1 Cluster Access ANd SECUTITYvvviiiiiiiii et 5-1
5.1.1 ssh(Secure Shell) ... 5-1

52 Global File SYStemSooueiiiiiie e 52
53 Environment ModUIEsooiiiiiiiiie e 52
5.3.1 USING MOAUIES ..ot 52
5.3.2 Setting Up the Shell RC Filescooiiiiiiiiii e 54

54 MOAUIE FIIES ... 55
5.4.1 Upgrading via the Modules Commandooociiiiiiiiiiiiiiic e 56

5.5 The Module COMMOANG.........iiiiiiiiiiie e 57
5.5 1 MOAUIBHIES ..o 57
5.5.2 Modules Package Initializationcccoiiiiiiiiiiiiiiiccec e 58
5.5.3 Examples of INfializationcooiiiiiiiiii e 59
554 Modulecmd STArUPo.viiiiiiiieiie e 59

vi

bullx cluster suite - User's Guide

555 Module Command Line SWITCRESoeeeee e, 59

5.5.6 Module SUb-Commands..........coouiiiiiiiiiiii i 5-10
5.5.7 Modules Environment Variablescccoiiiiiiiii 512

5.6 The NVIDIA CUDA Development ERVIFONMENtccuuiiiiiiiiiiieiiiiiieeeeiiie e 514
5.6.1 bullx cluster suite and CUDAoooiiiiiiiii e 5-14
5.6.2 NVIDA CUDA™ Toolkit and Software Developer Kitcccooiiiiiiiiiiiniiici 515
Chapter 6. Resource Management using SLURM.........coooiiiiiiiiiiiii, 6-1
6.1 SLURM Resource Management UHIHESoooiiuiiiiiiiiiiieciiic e 6-1
6.2 IMPL SUPPOTT .. 6-2
6.3 SRUN ettt e ettt e e e e aan s 64
6.4 SBATCH (BAICH) ...t 6-5
6.5 SALLOC (QlloCation) ... 66
6.6 S AT A CH e 67
6.7 SACCTMGR .o 6-8
6.8 B A ST ettt ettt 6-9
6.9 SQUEUE (List JODS)viiiiiiiii ittt 6-10
6.10 SINFO (Report Partition and Node Information)ccccooviiiiiiiiiniiiiiiiiiicceeie e, 6-11
6.11 SCANCEL (Signal/Cancel JObs).......cc.ooiiiiiiiiiiie e 6-12
6.12 SACCT (Accounting Data)eiiiiiiiiiie e 6-13
6.13 STRIGGER ...ttt ettt 6-14
O. 14 SVIEW 6-15
6.15 Global AcCOUNtNG APLooiiiiiiiiiieie e 6-16
Chapter 7. Launching an Applicationeueiiiiiiieeeiiiiieee e 7-1
7.1 Using PBS Professional Batch Manager..............ooiiiiiiiiiiiiccc e, 7-1
7.1.1 Prer@qUISIIES .o 7-1
7.1.2 SUBMIHING @ SCIIPE ..eeeiiiii et 7-1
7.1.3 Launching @ Ocouiiiiiii e 72
7.1.4 Displaying the results for @ jobcccciiiiiiiiii 7-2
7015 TrACING @ JOD weviiieiiiiiieee e 72
7016 EXIING @ JOD..uiiiiiiiiiiiiiee e 7-3

7.2 Launching an Application without a Batch Manager ..o, 7-3
Chapter 8. Application Debugging Toolsevvvveiriviiiiiiiiiiiiiiiieiieeeieeeeeeeee, 8-1
8.1 OVEIVIEW ...t 8-1
8.2 BB ettt 8-1
8.3 5 S PPPPUUTSSUPPPRRN 8-1
8.4 TOIALVIBW oot e et 8-2
8.5 3 PP UPR PRSPPI 8-3

Table of Contents vii

8.6 MALLOC_CHECK _ - Debugging Memory Problems in C programs............cccccoooviiiiniiiincne 8-5
8.7 ElECHiC FENCE ...ttt 8-7
Glossary and ACTONYMSceviiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee e e e e e e ee e e e e e e G-1
e L U USSR SUPRPPPRPRT -1

List of Figures

Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.
Figure 6-1.

Figure 8-1

Figure 8-2.

MPIBUII2 Linking SIrQIEGIesvvvvieeiiiiiieeeiiie et 2-5
IMPD) FINQ e 26
Bull Scientific StUdio SHUCIUIEooiiiiiiiiiiiie e 32
Interdependence of the different mathematical libraries (Scientific Studio and Intel)............. 3-4
MPI Process Management With and Without Resource Managerccccveeeviiiieeennn. 6-2
Totalview graphical interface — image taken from

http://www.totalviewtech.com/productsTV.htmcccvviiiiiiiiiiiiiiiiccciee e, 8-2
The Graphical User Interface for DDT..........c.cooiiiiiiiiiiiiiiii e 8-4

List of Tables

Table 5-1.
Table 7-1.

Examples of different module configurationsccccooiiiiiiiiiii 53
Launching an application without a Batch Manager for different clustersccccce.. 7-3

viii bullx cluster suite - User's Guide

Chapter 1. Introduction to the extreme computing
Environment

The term extreme computing describes the development and execution of large scientific
applications and programs that require a powerful computation facility which can process
enormous amounts of data to give highly precise results.

The bullx cluster suite is a software suite that is used to operate and manage a Bull extreme
computing cluster of Xeon-based nodes. These clusters are based on Bull platforms using
InfiniBand stacks or with Gigabit Ethernet networks. The bullx cluster suite includes both Bull
proprietary and Open Source software, which provides the infrastructure for optimal
interconnect performance.

The Bull extreme computing cluster includes an administrative network based on a 10/100
Mbit or a Gigabit Ethernet network, and a separate console management network.

The bullx cluster suite delivery also provides a full environment for development, including
optimized scientific libraries, MPI libraries, as well as debugging and performance
optimization tools.

This manual describes these software components, and explains how to work within the
bullx cluster suite environment.

1.1 Software Configuration

1.1.1 Operating System and Installation

The bullx cluster suite is based on a standard Linux distribution, combined with a number of
Open Source applications that exploit the best from the Open Systems community. This
combined with technology from Bull and its partners, results in a powerful, complete
solution for the development, execution, and management of parallel and serial
applications simultaneously.

lts key features are:

e Strong manageability, through Bull’s systems management suite that is linked to state-
of-the-art workload management software.

e High-bandwidth, low-latency interconnect networks.
e Scalable high performance file systems, both distributed and parallel.
All cluster nodes use the same Linux distribution. Parallel commands are provided to supply

users and system administrators with single-system attributes, which make it easier to
manage and fo use cluster resources.

Software installation is carried out by first creating an image on a node, loading this image
onto the Management Node, and then distributing it to the other nodes using the Image
Building and Deployment (KSIS) utility. This distribution is performed via the administration
network.

Introduction to the extreme computing Environment 1-1

1.2 Program Execution Environment

When a user logs onto the system, the login session is directed o one of several nodes
where the user may then develop and execute their applications. Applications can be
executed on other cluster nodes apart from the user login system. For development, the
environment consists of:

e Standard Linux tools such as GCC (a collection of free compilers that can compile
C/C++ and FORTRAN), GDB Gnu Debugger, and other third-party tools including the
Intel FORTRAN Compiler, the Intel C Compiler, Intel MKL libraries and Intel Debugger
IDB.

e Optimized parallel libraries that are part of the bullx cluster suite. These libraries
include the Bull MPI2 message-passing library. Bull MPI2 complies with the MPI1 and
2 standards and is a high performance, high quality native implementation. Bull MPI2
exploits shared memory for intra-node communication. It includes a trace and profiling
tool, enabling data to be tracked.

e Modules software provides a means for predefining and changing environments. Each
one includes a compiler, a debugger and library releases which are compatible with
each other. So it is easy to invoke one given environment in order to perform tests and
then compare the results with other environments.

1.2.1 Resource Management

The resource manager is responsible for the allocation of resources to jobs. The resources
are provided by nodes that are designated as compute resources. Processes of the job are
assigned to and executed on these allocated resources.

Both Gigabit Ethernet and InfiniBand clusters use the SLURM (Simple Linux Utility for
Resource Management) open-source, highly scalable cluster management and job
scheduling system. SLURM has the following functions.

e It allocates compute resources, in terms of processing power and Computer Nodes to
jobs for specified periods of time. If required the resources may be allocated
exclusively with priorities set for jobs.

e ltis also used to launch and monitor jobs on sets of allocated nodes, and will also
resolve any resource conflicts between pending jobs.

e It helps to exploit the parallel processing capability of a cluster.

See Administrator’s Guide and Chapter 6 in this manual for more information on SLURM

1.2.2 Batch Management

Different possibilities exist for handling batch jobs for extreme computing clusters.
e PBS-Professional, a sophisticated, scalable, robust Batch Manager from Altair

Engineering is supported as a standard. PBS Pro can also be integrated with the MPI
libraries.

1-2 bullx cluster suite - User's Guide

See PBS-Professional Administrator’s Guide and User’s Guide available on the PBS-Pro CD-
ROM delivered for the clusters which use PBS-Pro, and the PBS-Pro web site
http://www.pbsgridworks.com.

&mportont

PBS Pro does not work with SLURM and should only be installed on clusters which do not
use SLURM.

e LSF, a software from Platform™ Company for managing and accelerating batch
workload processing for compute-and data-intensive applications is optional on Bull
extreme computing.

1.2.3 Parallel processing and MPI libraries

A common approach to parallel programming is to use a message passing library, where
a process uses library calls to exchange messages (information) with another process. This
message passing allows processes running on multiple processors to cooperate.

Simply stated, a MPI (Message Passing Interface) provides a standard for writing message-
passing programs. A MPI application is a set of autonomous processes, each one running
its own code, and communicating with each other through calls to subroutines of the MPI
library.

Bull MPI2, Bull’s second generation MP! library, is included in the bullx cluster suite
delivery. This library enables dynamic communication with different device libraries,
including InfiniBand (IB) interconnects, socket Ethernet/IB/EIB devices or single machine
devices. Bull MPI2 is fully integrated with the SLURM resource manager.

See Chapter 2 for more information on MPI Libraries.

1.24 Data and Files

Application file 1/O operations may be performed using locally mounted storage devices,
or alternatively, on remote storage devices using either Lustre or the NFS file systems. By
using separate interconnects for administration and |/O operations, the Bull cluster system
administrator is able to isolate user application traffic from administrative operations and
monitoring. With this separation, application /O performance and process communication
can be made more predictable while still enabling administrative operations to proceed.

Introduction to the extreme computing Environment 1-3

14 bullx cluster suite - User's Guide

Chapter 2. Parallel Libraries

This chapter describes the following topics:

2.1 Overview of Parallel Libraries
2.2 MPIBull2

2.3 mpibull2-params

2.4 Managing your MPI environment
2.5 Profiling with mpianalyser

2.1 Overview of Parallel Libraries

A common approach to parallel programming is to use a message passing library, where
a process uses library calls to exchange messages (information) with another process. This
message passing allows processes running on multiple processors to cooperate.

Simply stated, a MPI (Message Passing Interface) provides a standard for writing message-
passing programs. A MPI application is a set of autonomous processes, each one running
its own code, and communicating with each other through calls to subroutines of the MPI
library.

Programming with MPI

It is not in the scope of the present guide to describe how to program with MPI. Please,
refer to the Web, where you will find complete information.

Parallel Libraries

2-1

2.2

2.2.1

222

22

MPIBull2

MPIBulI2 is a second generation MPI library. This library enables dynamic communication
with different device libraries, including InfiniBand (IB) interconnects, socket
Ethernet/IB/EIB devices or single machine devices.

MPIBulI2 conforms to the MPI-2 standard.

Quick Start for MPIBulI2

Nmportont

MPIBULL2 is usually installed in the /opt/mpi/mpibull2-<version> directory. The
environmental variables MPI_HOME, PATH, LD_LIBRARY_PATH, MAN_PATH,
PYTHON_PATH will need to be set or updated. These variables should not be set by the
user. Use the setenv_mpibull2.{sh,csh} environment setting file, which may be sourced from
the ${mpibull2_install_path}/share directory by a user or added to the profile for all users
by the administrator.

MPIBull2 Compilers

The MPIBUII2 library has been compiled with the latest Intel compilers, which, according to
Bull's test farms, are the fastest ones available for the Xeon architecture. Bull uses Intel lcc
and Ifort compilers to compile the MPI libraries. It is possible for the user to use their own
compilers to compile their applications for example gec, however see below.

In order to check the configuration and the compilers used to compile the MPI libraries look
at the ${mpibull2_install_path}/share/doc/compilers_version text file.

MPI applications should be compiled using the MPIBull2 MPI wrapper to compilers:

C programs: mpicc yourcode.c
C++ programs: mpiCC your-code.cc
or

mpic++ yourcode.cc (for case-insensitive file systems)
F77 programs: mpif77 yourcode.f
FQO programs: mpif90 your-code.fo0

Wrappers to compilers simply add various command line flags and invoke a back-end
compiler; they are not compilers in themselves.

The command below is used to override the compiler type used by the wrapper. —c, fc -,
and exx and used for C, Fortran and C++ wrappers.

mpi_user >>> mpicc -CCc=gcc prog.c -0 prog

bullx cluster suite - User's Guide

2.2.3 Configuring MPIBull2

MPIBull2 may be used for different architectures including standalone SMPs, Ethernet,
Infiniband or Quadrics Clusters.

You have to select the device that will use MPIBull2 before launching an application with
MPIBuII2.
The list of possible devices available is as follows:

— osock is the default device. This uses sockets to communicate and is the device of
choice for Ethernet clusters.

— oshm should be used on a standalone machines, communication is through
shared memory.

- ibmr_gen2, otherwise known as InfiniBand multi-rail gen2. This works over

InfiniBand’s verbs interface.

The device is selected by using the mpibull2-devices command with the —d switch, for
example, enter the command below to use the shared memory device:

mpi_user >>> mpibull2-devices —d=oshm

For more information on the mpibull2-devices command, see section 2.2.7.

22.4 Running MPIBulI2

The MPI application requires a launching system in order to spawn the processes onto the
cluster. Bull provides the SLURM Resource Manager as well as the MPD subsystem.

For MPIBull2 to communicate with SLURM and MPD, the PMI interface has to be defined.
By default, MPIBuII2 is linked with MPD’s PMI interface.

If you are using SLURM, you must ensure that MPIBULL2_PRELIBS includes pmi so that your
MPI application can be linked with SLURM's PMI library.

See o Chapter 6 for more information on SLURM
e Section 2.2.6.3 for more information on MPD

e Chapter 7 for more information on batch managers and launching jobs on extreme
computing clusters.

2.2.5 MPIBull2_1.3.x features

MPIBull2_1.3.x includes the following features:

e It only has to be compiled once, supports the NovaScale architecture, and is
compatible with the more powerful interconnects.

e ltis designed so that both development and testing times are reduced and it delivers
high performance on NovaScale architectures.

Parallel Libraries 2-3

2.2.6

2.2.6.1

24

e Fully compatible with MPICH2 MPI libraries. Just set the library path to get all the
MPIBuI2 features.

e Supports both MPI 1.2 and MPI 2 standard functionalities including
— Dynamic processes (osock only)
— One-sided communications
- Extended collectives
— Thread safety (see the Thread-Safety Section below)
- ROMIO including the latest patches developed by Bull

e Multi-device functionality: delivers high performance with an accelerated multi-device
support layer for fast interconnects. The library supports:

— Sockets-based messaging (for Ethernet, SDP, SCI and EIP)
— Hybrid shared memory-based messaging for shared memory
- InfiniBand architecture multirails driver Gen2

e Easy Runtime Selection: makes it easy and cost-effective to support multiple platforms.
With MPIBulI2 Library, both users and developers can select drivers at runtime easily,
without modifying the application code. The application is built once and works for all
interconnects supported by Bull.

e Ensures that the applications achieve a high performance with a high degree of
interoperability with standard tools and architectures.

e Common feature for all devices:

— FUTEX (Fast User mode muTEX) mechanism in user mode

Advanced features

MPIBull2 Linking Strategies

Designed to reduce development and testing time, MPIBull2 includes two linking strategies
for users.

Firstly, the user can choose to build his application and link dynamically, leaving the
choice of the MPI driver until later, according to which resources are available. For
instance, if a small Ethernet cluster is the only resource available, the user compiles and
links dynamically, using an osock driver, whilst waiting for access to a bigger cluster via a
different InfiniBand interconnect and which uses the ibmr_gen2 driver at runtime.

Secondly, the User might want to use an out-of-the-box application, designed for a specific
MPI device. Bull provides the combination of a MPI Core and all its supported devices,
which enables static libraries to be linked to by the User’s application.

bullx cluster suite - User's Guide

22.6.2

2263

DYMAMIC STRATEGY STATIC STRATEGY
USER'S APPLICATION (UA) UA UA
MP| CORE MPI CORE
MPI DRIVERS OSHM OSOCK | [ibmr_gen2||| OSHM 0SOCK

Figure 2-1. MPIBulI2 Linking Strategies

Thread-safety

If the application needs an MPI Library which provides MPI_THREAD_MULTIPLE thread-
safety level, then choose a device which supports thread safety and select a *_ts device.
Use the mpibull2-device commands.

Note Thread-safety within the MPI Library requires data locking. Linking with such a library may
impact performance. A loss of around 10 to 30% has been observed on micro-
benchmarks.

Not all MPI Drivers are delivered with a thread-safe version. Devices known to support
MPI_THREAD_MULTIPLE include osock and oshm.
Using MPD

MPD is a simple launching system from MPICH-2.

To use it, you need to launch the MPD daemons on Compute hosts.
If you have a single machine, just launch mpd & and your MPD setup is complete.
If you need to spawn MPI processes across several machines, you must use mpdboot to

create a launching ring on the cluster. This is done as follows:

1. Create the hosts list:

mpi user >>> export cluster machines="hostl host2 host3 host4"

2. Create the file used to store host information:

mpi user >>> for i in $cluster machines; do echo "$i" >> machinefiles; done

3. Boot the MPD system on all the hosts:

mpi user >>> mpdboot -n $(cat $clustermachines wc -1) -f machinefiles

Parallel Libraries 2-5

4. Check if everything is OK:

mpi_user >>> mpdtrace

5. Run the application or try hostname:

mpi user >>> mpiexec -n 4 ./your application

MPI Process Daemons (MPD) run on all nodes in a ring like structure and may be used in
order to manage the launch of the different processes. MPIBull2 library is PMI compliant
which means it can interact with any other PMI PM. This software has been developed by
ANL. In order to set up the system the MPD ring must firstly be knitted using the procedure
below:

1. Atthe $HOME prompt edit the .mpd.conf file by adding something like
MPD_SECRETWORD=your_password and chmod 600 to the file.

2. Create a boot sequence file. Any type of file may be used. The MPD system will by
default use the mpd.hosts file in your $HOME directory if a specific file is not specified
in the boot sequence. This contains a list of hosts, separated by carriage returns. Semi-
colons can be added to the host to specify the number of CPUS for the host, for

example.
hostl:4
host2:8
MPD RIMG
CU mpiexec il

spawning
rlIIlIF.:.-1|

LT R PN T TR TR PR Y B TR TR T T T TR PR TR T TRAT RS

O

processes pProcesses processes
an host o host an host

CL mpirun

Figure 2-2. MPD ring

3. Boot the ring by using the mpdboot command, and specify the number of hosts to be
included in the ring.

mpdboot -n 2 -f myhosts_Tfile

Check that the ring is functioning correctly by using the mpdtrace or mpdringtest
commands. If everything is okay, then jobs may be run on the cluster.

2-6 bullx cluster suite - User's Guide

2.2.6.4

Dynamic Process Services

The main goal of these services is to provide a means to develop software using multi-agent
or master/server paradigms. They provide a mechanism to establish communication
between newly created processes and an existing MPI application (MPI_COMM_SPAWN).
They also provide a mechanism to establish communication between two existing MPI

applications, even when one did not 'start' the other (MPI_PUBLISH_NAME) .

MPI_PUBLISH_NAME structure
MPI_PUBLISH_NAME (service_name, info, port_name)

IN service_name a service name to associate with the port (string)
IN info implementation-specific information (handle)
IN port_name a port name (string)

Although these paradigms are useful for extreme computing clusters there may be a
performance impact. MPIBull2 includes these Dynamic Process Services, but with some
restrictions:

e Only the osock socket MPI driver can be used with these dynamic processes.
e A PMI server implementing spawn answering routines must be used as follows.

— For all Bull clusters the MPD sub-system is used - see the sections above for more
details.

- For clusters which use SLURM, a MPD ring must be deployed once SLURM's
allocation has been guaranteed.

— PBS Professional clusters can use MPD without any restrictions.

e The quantity of processes which can be spawned depend on the reservation previously
allocated with the Batch Manager /Scheduler (if used)

See The chapter on Process Creation and Management in the MPI-2.1 Standard documentation
available from hitp://www.mpi-forum.org/docs/ for more information.
MPI Ports Publishing Example
Sever Client
Command mpiexec -n 1 ./server mpiexec -n 4 ./toy

Process

(MPI_Open_port) + (MPI_Publish_name)

MPIBUII2 1.3.9-s (Astlik)
MPI_THREAD_FUNNELED (device osock)

Server is waiting for connections

MPIBulI2 1.3.9-s (Astlik) MPI_THREAD_FUNNELED

(device osock)
(MPI_Get_attribute)

Got the universe size from server
(MPI_Lookup_name)

Lookup found service
attag#0$port#35453 $description#10.11.0.11
$ifname#10.11.0.11$ port [x4]

Parallel Libraries 27

http://www.mpi-forum.org/docs/

(MPI_Comm_accept)

Master available, Received from 0
Now time to merge the communication
(MPI_Comm_merge)

Establish communication with 1st slave
Accept communication fo port

Slave 1 available

Slave 2 available

Disconnected from slave, Send message to
Master

Slave 3 available

Disconnected from slave, Send message to
Master

(MPI_Comm_Unpublish_name)
(MPI_Close_Port)

(MPI_Comm_connect) + (MPI_Send / MPI_Recv)
Sent stuff to the comminter

Recv stuff to the comminter

Master Process at work, merge comm
Master: number of tasks to distribute: 10
Sent a message to the following MPI process
Sent stuff to the comminter

Recv stuff to the comminter

Slave Process at work, merge comm
Sent stuff to the comminter

Recv stuff to the comminter

Slave Process at work, merge comm
Sent stuff to the comminter

Recv stuff to the comminter

Slave Process at work, merge comm
Process 1 with 1 Threads runs at work
1: Got task from 900001 to 1000000
Merged and disconnected
(MPI_Comm_disconnect)

Assigned tasks: —0 0—1 [x10]
[compute]

| give up

3: Wallclock Time: 45.2732

1: Wallclock Time: 45.2732
Unpublishing my service toyMaster

2: Wallclock Time: 45.2732

Closing my port of connection (master)
master disconnected from 1

master disconnected from 2

master disconnected from 3

Master with 1 Threads joins computation (univ: 1)

disconnected from server

0: Wallclock Time: 45.2757

2-8

bullx cluster suite - User's Guide

227

2271

2272

MPIBulI2 Tools

MPIBull2-devices

This tool may be used to change the user's preferences. It can also be used to disable a
library. For example, if the program has already been compiled and the intention is to use
dynamic MPI Devices which have already been linked with the MPI Core, then it is now
possible to specify a particular runtime device with this tool. The following options are
available with MPIBULL2-devices

-dl Provides list of drivers. This is also supported by MPI wrappers.

dlv Provides list of drivers with versions of the drivers.

mpi_user >>> mpibull2-devices -dl

MPIBULL2 Communication Devices :

+ Original Devices :

*oshm : Shared Memory device, to be used on a single machine [static][dynamic]
*osock : Socket protocol (can be used over IPolB, SDP, SCI...) [static][dynamic]

Rk =k =

< Obtains details of the user's configuration.

mpi_user >>> mpibull2-devices -c

MPIBULL2 home : Zinstall_path
User prefs

__ Directory : /home_nfs/mpi_user/ _MPIBull2/

__ Custom devices : /home_nfs/mpi_user/.MPIBull2//site_libs
__ MPI Core flavor : Standard / Error detection on

_ MPI Communication Driver : oshm (Shared Memory device, to be used on

a single machine) [static][dynamic]

-d=xxx Sets the communication device driver specified.

mpi_user >>> mpibull2-devices -d=ibmr_gen2

mpibull2-aunch

This is a meta-launcher which connects to whatever process manager is specified by the
user. It is used to ensure compatibility between different process manager launchers, and
also to allow users to specify their custom key bindings.

The purpose of mpibull2daunch is to help users to retain their launching commands.
mpibull2-launch also interprets user’s special keybindings, in order to allow the user to
retain their preferences, regardless of the cluster and the MPI library. This means that the
user’s scripts will not need changing, except for the particular environment variables that
are required.

The mpibull2-launch tool provides default keybindings. The user can check them using the
--metahelp option. If the user wishes to check some of the CPM (Cluster Process Manager)
special commands, they should use --options with the CPM launch name command (e.g.
--options srun).

Parallel Libraries 2-9

2273

2274

227.5

2-10

Some tool commands and ‘device’ functionalities rely on the implementation of the MPI
components. This simple tool maps keybindings to the underlying CPM. Therefore, a unique
command can be used to launch a job on a different CPM, using the same syntax.
mpibull2-launch system takes in account the fact that a user might want to choose their own
keybindings. A template file, named keylayout.tmp1, may be found in the tools rpm which
may be used to construct individual keybinding preferences.

Launching a job on a cluster using mpibull2-launch

For a SLURM CPM use a command similar to the one below and set
MPIBULL2_LAUNCHER=srun to make this command compatible with the SLURM CPM.

mpibull2-launch -n 16 -N 2 -ptest ./job

Example for a user who wants to use the Y key for the partition

PM Partition to use+Y:+partition:

The user should edit a file using the format found in the example template, and then add
custom bindings using the —custom_keybindings option. The + sign is used to separate the
fields. The first field is the name of the command, the second the short option, with a colon
if an argument is needed, and the third field is the long option.

mpiexec

This is a launcher which connects to the MPD ring.

mpirun

This is a launcher which connects to the MPD ring.

mpicc, mpiCC, mpicxx, mpif77 and mpif90

These are all compiler wrappers and are available, for C, C++, Fortran 77 and Fortran 90
languages. These allow the user to concentrate on developing the application without
having to think about the internal mechanics of MPI. The man page files provide more
details about wrappers.

When using compiling tools, the wrappers need to know which communication device and
a linking strategy they should use. The compiling tools parse as long as some of the
following conditions have been met:

e The device and linking strategy has been specified in the command line using the -sd
options.

e The environment variables DEF_MPIDEV, DEF_MPIDEV_LINK (required to ensure
compatibility), MPIBULL2_COMM_DRIVER, and MPIBULL2_LINK_STRATEGY have

been set.

e The preferences have already been set up; the tools will use the device they find in the
environment using the MPIBULL2-devices tool.

bullx cluster suite - User's Guide

228

2.2.8.1

228.2

e The tools take the system default, using the dynamic socket device.

Note

One can obtain better performance using the —fast/-static options to link statically with one
of the dependent libraries, as shown in the commands below.

mpicc —static prog.c
mpicc —fFast prog.c

MPIBull2 — Example of use

Setting up the devices

When compiling an application the user may wish to keep the makefiles and build files
which have already been generated. Bull has taken this into account. The code and build
files can be kept as they are. All the user needs to do is to set up a few variables or use the

MPIBULL2-devices tool.

During the installation process, the /etc/profile.d/mpibull2.sh file will have been modified
by the System Administrator according to the user’s needs. This file determines the default
settings (by default the rpm sets the osock socket/TCP/IP driver). It is possible to override
these settings by using environment variables — this is practical as it avoids modifying
makefiles - or by using the tools options. For example, the user can statically link their
application against a static driver as shown below. The default linking is dynamic, and this
enables drive modification during runtime. Linking statically, as shown below, overrides the
user's preferences but does not change them.

mpi_user >>> mpicc -sd=ibmr gen2 prog.c -o prog

mpicc : Linking statically MPI library with device (ibmr gen2)

The following environment variables may also be used
MPIBULL2_COMM_DRIVER Specifies the default device to be linked against

MPIBULL2_LINK_STRATEGY Specifies the link strategy (the default is dynamic)

(this is required to ensure compatibility)

MPIBULL2_MPITOOLS_VERBOSE Provides information when building (the default is

verbose off)

mpi_user >>> export DEF_MPIDEV=ibmr_gen2

mpi_user >>> export MPIBULL2_MPITOOLS VERBOSE=1

mpi_user >>> mpicC prog.c -o prog

mpicc : Using environment MPIl variable specifications

mpicc : Linking dynamically MPI library with device (ibmr_gen2)

Submitting a job
If a user wants to submit a job, then according to the process management system, they

can use MPIEXEC, MPIRUN, SRUN or MPIBULL2-LAUNCH to launch the processes on the
cluster (the online man pages gives details of all the options for these launchers)

Parallel Libraries ~ 2-11

229

212

MPIBull2 and NFS Clusters

To use MPI and NFS together, the shared NFS directory must be mounted with the no
attribute caching (noac) option added; otherwise the performance of the Input/Output
operations will be impacted. To do this, edit the /etc/fstab file for the NFS directories on
each client machine in a multi-host MPI environment.

Note

All the commands below must be carried out as root.

Run the command below on the NFS client machines:

grep nfs_noac /etc/fstab

The fstab entry for /nfs_noac should appear as below:

/nfs_noac /nfs_noac nfs bg,intr,noac 0 0

If the noac option is not present, add it and then remount the NFS directory on each
machine using the commands below.

umount /nfs_nhoac
mount /nfs_noac

To improve performance, export the NFS directory from the NFS server with the async
option.

This is done by editing the /etc/exports file on the NFS server to include the async option,
as below.

Example

The following is an example of an export entry that includes the async option for
/nfs_noac:

grep nfs_noac /etc/exports

/nfs_noac *(rw,async)

If the async option is not present, add it and export the new value:

exportfs -a

bullx cluster suite - User's Guide

2.2.10

2.2.10.1

2.2.10.2

2.2.10.3

Debugging

Parallel gdb

With the mpiexec launching tool it is possible to add the Gnu DeBugger in the global
options by using -gdb. All the gdb outputs are then aggregated, indicating when there are
differences between processes. The -gdb option is very useful as it helps to pinpoint faulty
code very quickly without the need of intervention by external software.

Refer to the gdb man page for more details about the options which are available.

Totalview

Totalview is a proprietary software application and is not included in the bullx cluster suite
distribution. See chapter 8 for more details.

It is possible to submit jobs using the SLURM resource manage with a command similar to
the format below or via MPD.

totalview srun —a <args> ./prog <progs_args>

Alternatively, it is possible to use MPI process daemons (MPD) and to synchronize Totalview
with the processes running on the MPD ring.

mpiexec -tv <args> ./prog <progs_args>

MARMOT MPI Debugger

MARMOT is an MPI debugging library. MARMOT surveys and automatically checks the
correct usage of the MPI calls and their arguments made during runtime. It does not replace
classical debuggers, but is used in addition to them.

The usage of the MARMOT library will be specified when linking and building an
application. This library will be linked to the application and to the MPIBULL2 library.
It is possible to specify the usage of this library manually by using the
MPIBULL2_USE_MPI_MARMOT environment variable, as shown in the example below;

export MPIBULL2_USE_MPI_MARMOT=1
mpicc bench.c -o bench

or by using the -marmot option with the MPI compiler wrapper, as shown below:

mpicc -marmot bench.c -o bench

See

the documentation in the share section of the marmot package, or go to
http://www.hlrs.de/organization/amt/projects/marmot/ for more details on Marmot.

Parallel Libraries 2-13

http://www.hlrs.de/organization/amt/projects/marmot/

23

2.3.1

2-14

mpibull2-params

mpibull2-params is a tool that is used to list/modify/save/restore the environment variables
that are used by the mpibull2 library and/or by the communication device libraries
(InfiniBand, Quadrics, etc.). The behaviour of the mpibull2 MPI library may be modified
using environment variable parameters to meet the specific needs of an application. The
purpose of the mpibull2-params tool is to help mpibull2 users to manage different sets of
parameters. For example, different parameter combinations can be tested separately on a
given application, in order to find the combination that is best suited to its needs. This is
facilitated by the fact that mpibull2-params allow parameters to be set/unset dynamically.

Once a specific combination of parameters has been tested and found to be good for a
particular context, they can be saved into a file by a mpibull2 user. Using the mpibull2-
params tool, this file can then be used to restore the set of parameters, combined in exactly
the same way, at a later date.

Notes

The effectiveness of a set of parameters will vary according to the application. For
instance, a particular set of parameters may ensure low latency for an application, but
reduce the bandwidth- By carefully defining the parameters for an application the
optimum, in terms of both latency and bandwidth, may be obtained.

e Some parameters are located in the /proc file system and only super users can modify
them.

The entry point of the mpibull2-params tool is an internal function of the environment. This
function calls an executable to manage the MPI parameter settings and to create two
temporary files. According to which shell is being used, one of these two files will be used
to set the environment and the two temporary files will then be removed. To update your
environment automatically with this function, please source either the
$MPI_HOME/bin/setenv_mpibull2.sh file or the $MPI_HOME/bin/setenv_mpibull2.csh

file, according to which shell is used.

The mpibull2-params command

SYNOPSIS

mpibull2-params <operation_type> [options]

Actions

The following actions are possible for the mpibull2-params command:
1 List the MPI parameters and their values

f List families of parameters

-m Modify a MPI parameter

-d Display all modified parameters

-s Save the current configuration into a file

bullx cluster suite - User's Guide

T Restore a configuration from a file

-h Show help message and exit

Options

The following options and arguments are possible for the mpibull2-params command.

Note The options shown can be combined, for example, -li or can be listed separately, for
example -| —i. The different option combinations for each argument are shown below.
1 [iv] [PNAME]

List current default values of all MPI parameters. Use the PNAME argument (this could be a
list) to specify a precise MPI parameter name or just a part of a name. Use the -v (verbose)
option to display all possible values, including the default. Use the -i option to list all
information.

Examples

This command will list all the parameters with the string “all’ or ‘shm” in their name.
mpibull2-params - | grep -e all -e shm will return the same result.

mpibull2-params -1 all shm

This command will display all information - possible values, family, purpose, etc. for each
parameter name which includes the string ‘all’. This command will also indicate when the
current value has been returned by getenv() i.e. the parameter has been modified in the
current environment.

mpibull2-params -1i all

This command will display current and possible values for each parameter name which
includes the string ‘rom’. It is practical to run this command before a parameter is modified.

mpibull2-params -1v rom

£ [I[iv]] [FNAME]

List all the default family names. Use the FNAME argument (this could be a list) to specify a
precise family name or just a part of a name. Use the -l option to list all parameters for the
family specified. -, -v and -i options are as described above.

Examples

This command will list all family names with the string ‘band’ in their names.

mpibull2-params -f band

Parallel Libraries 2-15

2-16

For each family name with the string ‘band’ inside, this command will list all the parameters
and current values.

mpibull2-params -fl band

‘m [v] [PARAMETER VALUE]

Modify a MPI PARAMETER with VALUE. The exact name of the parameter should be used
to modify a parameter. The parameter is set in the environment, independently of the shell
syntax (ksh/csh) being used. The keyword ‘default’ should be used to restore the parameter
to its original value. If necessary, the parameter can then be unset in its environment. The
-m operator lists all the modified MPI parameters by comparing all the MPI parameters with
their default values. If none of the MPI parameters have been modified then nothing is
displayed. The —-m operator is like the -d option. Use the -v option for a verbose mode.

Examples

This command will set the ROMIO_LUSTRE parameter in the current environment.

mpibull2-params -m mpibull2_romio_lustre true

This command will unset the ROMIO_LUSTRE parameter in the environment in which it is
running and returns it to its default value.

mpibull2-params -m mpibull2_romio_lustre default

d[V]
This will display the difference between the current and the de